Pulsed laser ablation of dental calculus in the near ultraviolet.

نویسندگان

  • Joshua E Schoenly
  • Wolf Seka
  • Peter Rechmann
چکیده

Pulsed lasers emitting wavelengths near 400 nm can selectively ablate dental calculus without damaging underlying and surrounding sound dental hard tissue. Our results indicate that calculus ablation at this wavelength relies on the absorption of porphyrins endogenous to oral bacteria commonly found in calculus. Sub- and supragingival calculus on extracted human teeth, irradiated with 400-nm, 60-ns laser pulses at ≤8  J/cm2, exhibits a photobleached surface layer. Blue-light microscopy indicates this layer highly scatters 400-nm photons, whereas fluorescence spectroscopy indicates that bacterial porphyrins are permanently photobleached. A modified blow-off model for ablation is proposed that is based upon these observations and also reproduces our calculus ablation rates measured from laser profilometry. Tissue scattering and a stratified layering of absorbers within the calculus medium explain the gradual decrease in ablation rate from successive pulses. Depending on the calculus thickness, ablation stalling may occur at <5  J/cm2 but has not been observed above this fluence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulsed Laser Ablation of Dental Calculus in the Near-Ultraviolet

LLE Review, Volume 134 136 Introduction Selective removal of subgingival dental calculus is a preferred treatment method in nonsurgical periodontal therapy. While complete removal of calculus and disease-causing agents (i.e., oral bacteria) is of primary importance, leaving behind a hard tissue surface less prone to bacterial accumulation is also important. Grooves and craters resulting from co...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

Study of laser ablation using nano-second laser pulses

 In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...

متن کامل

Therapeutic ratio quantifies laser antisepsis: ablation of Porphyromonas gingivalis with dental lasers.

BACKGROUND AND OBJECTIVES It is established that both pulsed Nd:YAG (1,064 nm) and continuous diode (810 nm) dental lasers kill pathogenic bacteria (laser antisepsis), but a quantitative method for determining clinical dosimetry does not exist. The purpose of this study was to develop a method to quantify the efficacy of ablation of Porphyromonas gingivalis (Pg) in vitro for two different laser...

متن کامل

Cavity formation in a liquid Sn droplet driven by laser ablation pressure for an extreme ultraviolet light source target

An in situ approach to the formation of cavities in liquid Sn droplets for the purpose of increasing ion density from Sn plasma produced by a CO2 laser is investigated. Two-dimensional hydrodynamic simulations, treating the laser as a pulsed pressure source, are compared both spatially and temporally to experimental shadowgraphs for verification of cavity formation. It is shown that a 15 ns pul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2014